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31062 Toulouse Cedex, France

Received 10 July 2000 and Received in final form 15 September 2000

Abstract. Atomic diffraction by a laser stationary wave is commonly used to build mirrors and beam
splitters for atomic interferometers. Many aspects of this diffraction process are well understood but it is
difficult to get an unified view of this process because it is commonly described in several approximate
ways. We want to show here that a description inspired by optics and using the exact Bloch description
of the atomic wave inside the laser standing wave is a tutorial way of describing the various regimes by
a single formalism. In order to get simple analytic expressions of the diffraction amplitudes, we consider
a standing wave intensity with a flat transverse profile. The resulting general expression of the diffraction
intensities is then compared to available analytical formulae in the Raman-Nath limit and in the Bragg
regime. We think that this formalism can be fruitfully extended to study many important questions.

PACS. 39.20.+q Atom interferometry techniques – 42.50.Ct Quantum description of interaction of light
and matter; related experiments – 03.75.-b Matter waves

1 Introduction

We discuss here the diffraction of an atomic wave by a
laser standing wave. We assume that the laser detuning is
sufficient so that real population of the resonantly excited
state is negligible so that spontaneous emission can be ne-
glected. The only effect of the laser is then to create a
potential proportional to the laser power density. Atomic
diffraction results from the periodic character of this po-
tential and the present results can be easily generalized to
various types of periodic potentials.

Many works have already been devoted to this diffrac-
tion process. We will quote the observation of the Kapitza-
Dirac diffraction of atoms by Pritchard and coworkers
[1–5], the observation of Bragg diffraction by the same
group [6] further studied by Siu Au Lee and coworkers
[7,8] and by Zeilinger and coworkers [9–13]. Many papers
studying theoretically this process should also be quoted
and by lack of space, we will quote only two early works
[14,15] and a recent review [16].

When compared to previous works, the original char-
acter of the present treatment is the use of Bloch states to
describe the atomic motion inside the laser standing wave.
The application of Bloch states to atomic motion has been
initially discussed by Castin and Dalibard [17]. The asso-
ciated quantum dynamics was first observed experimen-
tally in 1996, by Salomon and co-workers [18] and by
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Raizen and coworkers [19]. The present formalism appears
somewhat implicitly in two papers published in 1999, in a
theoretical paper by Horne, Jex and Zeilinger [20] which
discusses Bragg scattering as solutions of the Mathieu
equation and in the discussion of an experimental paper by
Keller et al. [21]. Here, we introduce explicitly the Bloch
atomic states: this point of view is very tutorial and it
simplifies considerably the discussion. In this way, our dis-
cussion goes further than these two recent papers [20,21].

2 The problem

The problem treated here is the simplest case of atomic
diffraction by a laser standing wave. The quasi-resonant
laser waves propagate along the ±x-direction and we as-
sume that the laser beams are not limited in the y-
direction. The atom is assumed to be in its ground state.
If the laser detuning is sufficient, no real excitation will oc-
cur and in the dressed-atom picture [22], one shows that
the only effect of the laser standing wave is to create a
light shift potential V (x, z):

V (x, z) = V0(z) cos2(kLx)

=
V0(z)

4
[2 + exp(+ikgx) + exp(−ikgx)] (1)

where the grating wavevector kg is related to the laser
wavevector kL by kg = 2kL. As the potential has no de-
pendence on y, the motion along y is free. It will not
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be discussed anymore and its contribution to the kinetic
energy will also be forgotten. We have to solve the follow-
ing Schrödinger equation in its time independent form:

− ~
2

2m

(
∂2Ψ

∂x2
+
∂2Ψ

∂z2

)
+ V (x, z)Ψ =

~2k2
1

2m
Ψ (2)

where k1 is the atomic wavevector in free space. Through-
out the present paper, we will assume that V0(z) is ev-
erywhere considerably smaller than the total energy E
given by the initial kinetic energy, E = ~2k2

1/2m. This
assumption is interesting as it simplifies the calculations
in several places but it is not fundamental and it can be
easily relaxed. Using this approximation, one can relate
the time-independent picture used here to an equivalent
time-dependent picture (see Appendix A). Then, neglect-
ing in the potential the term which does not depend on x,
equation (2) takes the form:

∂2Ψ

∂x2
+
∂2Ψ

∂z2
+ k2

1

(
1− V0(z) cos(kgx)

2E

)
Ψ = 0. (3)

In this paper, except in Section 7, we assume that the laser
has a flat intensity profile so that the potential amplitude
V0(z) is nonzero and constant (noted V0) between z = 0
and z = D. This is a rather rough approximation of real
experiments, but this assumption is necessary to make the
problem as simple as possible. The general case requires
numerical integration, if we except some particular cases
as the one discussed in Section 7.

Equation (3) is completely similar to the wave equation
describing diffraction of light by sound waves [23,24] which
is recalled in Appendix B. This is a well known result as
it is possible to define an index of refraction n related to
the potential V (x, z) by:

n2 = 1− V (x, z)
E

· (4)

Moreover, the calculation presented here is similar in
its content to the one presented in an early work of
Wagner [23].

The principle of our treatment is to write the general
solution for the atomic wave in three regions: region 1
which is the vacuum for z ≤ 0, region 2 which is the
grating for 0 ≤ z ≤ D, and region 3 which is the vacuum
for z ≥ D (see Fig. 1). Then, as in optics when establishing
Fresnel laws, we apply the continuity equations for the
atomic wave in the planes z = 0 and z = D.

3 Atomic Bloch states inside the laser
standing waves

The motion of an atom inside the grating is free along
the z-direction and is described by plane waves. The mo-
tion along the x-direction is described by Bloch states
introduced in the domain of atom optics by Castin and
Dalibard [17]. We first recall briefly some general results,
which can be found in any solid state physics book. In the

zD

x

0

Ψ1 Ψ2 Ψ3

Fig. 1. In this figure, we define three different regions of space
as discussed in Section 4. For z < 0 and z > D, the atomic
wave Ψ1 or Ψ3 propagates in free space, while in the range
0 < z < D, the atomic wave Ψ2 interacts with the potential
V (x, z) which plays the role of a thick grating.

presence of a periodic potential, the eigenstates Ψ(x) of
the Hamiltonian can be written as

Ψk,p(x) = exp (ikx)uk,p(x) (5)

where uk,p(x) are periodic functions of x, with a period
a = 2π/kg equal to the grating period. In other words, the
Fourier transform of a Bloch state contains only compo-
nents whose wavevector along x are pkg + k where p is an
integer. The quasi-momentum k can always be chosen in-
side the first Brillouin zone (i.e. −kg/2 < k ≤ kg/2) and
we assume that it is the case. If the potential vanishes,
the eigenstates remain plane waves with a well defined
wavevector kx and we may define the index p by:

kx = pkg + k (6)

and we may use this integer to label the various energy
bands. The energy as a function of k is the well-known
folded parabola (see Fig. 2):

ε0(k, p) = ~2(pkg + k)2/2m. (7)

Equation (7) introduces the natural energy scale of
the problem, the atom recoil energy given by ~ωrec =
~2k2

L/2m = ~2k2
g/8m. It is convenient to measure the po-

tential in this energy unit, by introducing a dimensionless
parameter q defined by [21]:

q = V0/(4~ωrec). (8)

In the presence of the potential given by equation (1), the
Bloch eigenstates are mixtures of plane waves with the
same k value and different values of the index p and their
modified energies are noted ε(k, p). More precisely, the
potential terms proportional to exp(±ikgx) couple states
with p values differing by ±1. When q is small, this struc-
ture of the coupling terms makes that a perturbative view-
point is very useful. The coupling terms open gaps ev-
erywhere two branches of the folded parabola cross, i.e.
in the center and on the boundaries of the first Brillouin
zone. The gap near a crossing of two unperturbed branches
labeled by p1 and p2 appears at a perturbation order
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Fig. 2. Plots of the energies ε of the lowest Bloch states be-
longing to the first Brillouin zone versus the reduced quasimo-
mentum k/kg. The energy unit is ~ωrec and we have plotted
the energy diagram for two values of the potential strength
parameter q = V0/4~ωrec: solid line q = 1, dashed line, q = 0.
The energy shift V0/2 has been omitted.

n = |p1 − p2| and, as long as q is not too large, the effec-
tive coupling between two levels can be calculated at the
lowest nonvanishing order of perturbation theory [7,8,21].
When q is small (q . 1), the effective coupling decreases
rapidly with the order n and this fact explains why the
high-n gaps are too small to be visible. This is illustrated
in Figure 2 where the energies ε(k, p) are plotted as a func-
tion of k and p for q = 0 and 1. The common shift of all
the energy levels due to the term V0/2 does not appear
as this term has been omitted in equation (3). The cal-
culations necessary to produce the plots of Figure 2 are
made in a truncated basis of free Bloch states. The size
of the basis set necessary to get converged results can be
evaluated using semiclassical arguments. This size is com-
parable to the number of discrete bound states in a well
corresponding to one period of the potential V , which is
given by 4

√
q/π.

4 Continuity equations and diffraction
amplitudes

We now write the general form of the solution in the three
different regions of space and the continuity of the atomic
wave on the boundaries. Continuity for all times ensures
energy conservation. On a boundary, the wavefunction and
its normal derivative must be continuous. If we assume
for example the boundary to be the z = 0 plane, the
continuity equations take the form:

Ψ(z = 0−) = Ψ(z = 0+)

and
∂Ψ

∂z
(z = 0−) =

∂Ψ

∂z
(z = 0+). (9)

These two continuity equations can be fulfilled together
only if we consider a reflected wave. Here, we will neglect
any atomic wave reflected by the boundaries. This is a
good approximation because the potential V0 is very weak
with usual laser power densities. We have already assumed
in Section 2 that V0 is considerably smaller than the atom
kinetic energy E and this is justified as long as the atoms

are not ultra-cold. Moreover, the transitions between the
vacuum and the grating in the planes z = 0 and z =
D occur on distances which are always larger than the
laser wavelength and therefore considerably larger than
the atomic wavelength; this circumstance further reduces
the amplitude of the reflected wave. When neglecting the
reflected wave, the two continuity equations are equivalent
and we will use the continuity of the wavefunction.

In this part, we will use Dirac notations. In region 1,
which is free space with z ≤ 0, the incident atomic wave
is assumed to be described by a plane wave

|Ψ1〉 = |kx1〉 |kz1〉 . (10)

In region 2, inside the grating 0 ≤ z ≤ D, the transmitted
wave is described by a sum of products of Bloch states
noted |k, p2〉 (for the x motion) by plane waves describing
the z motion:

|Ψ2〉 = Σk,p2bp2(k) |k, p2〉 |kz2(k, p2)〉 . (11)

In region 3, the transmitted wave can be written as a sum
of plane waves

|Ψ3〉 = Σp3cp3 |kx3(p3)〉 |kz3(p3)〉 . (12)

In the plane z = 0, the continuity of the wavefunction
proves that the non vanishing coefficients bp2(k) are those
for which k is the image of kx1 in the first Brillouin zone.
This reduces the double sum over k and p2 appearing in
equation (11) to a single sum over p2. To calculate the
coefficients bp2(k), we write 〈z = 0|Ψ1〉 = 〈z = 0|Ψ2〉 and
we introduce a sum rule using the Bloch state basis set,
which is equivalent to write the equality of the x-Fourier
transform of these two wavefunctions. We thus get:

bp2(k) = 〈k, p2|kx1〉 . (13)

In the same way, continuity in the plane z = D proves
that the final states have the following x component of
their wavevector:

kx3(p3) = kx1 + p3kg. (14)

With this choice, the index p3 is the usual diffraction or-
der. Continuity provides the amplitudes of the various
diffraction orders:

cp3 = Σp2 〈kx3(p3)|k, p2〉 〈k, p2|kx1〉
× exp [i (kz2(k, p2)− kz3(p3))D] . (15)

Energy conservation writes:

~2(k2
x1+k2

z1)
2m

= ε(k, p2)+
~2kz2(k, p2)2

2m
=
~2(k2

x3+k2
z3)

2m
·

(16)

As long as q and kx1/kg are not too large, the impor-
tant contributions in equation (15) come from small val-
ues of p2 and, in this range, the dependence of kz2(k, p2)
with p2 is small. Nevertheless, when the wave reaches the
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plane z = D, the dependence with p2 of the accumulated
phases creates the diffraction effect. If the propagation
phases appearing in equation (15) were independent of p2,
a sum rule would obviously appear in this equation and
only one plane wave would be transmitted in medium 3,
corresponding to the zeroth order of diffraction. In this
formalism, diffraction appears very easy to calculate and
to understand. In particular, an interesting point is that,
inside the grating, the wave is split in an infinite series
of different waves labeled by the index p2 and having dif-
ferent wavevectors. This generalizes the treatment intro-
duced for neutrons and adapted to the atomic case [16].
We are now going to test the present approach in the
Raman-Nath and Bragg regimes.

5 Raman-Nath diffraction regime

Following the discussion presented by Keller et al. [21],
this problem involves three main parameters. Two of them
have already been discussed: the potential strength V0 and
the recoil energy ~ωrec. The last parameter is the interac-
tion time tint of the atom with the grating. For an inci-
dence not too far from normal incidence, the velocity vz
is closely approximated by vz ≈ ~k1/m and the interac-
tion time is given by tint = D/vz ≈ mD/~k1. With these
three parameters, we can build two dimensionless parame-
ters, namely q already introduced (Eq. (8)) and a reduced
interaction time τint given by:

τint = ωrectint. (17)

With these notations and using the fact that E � V0, the
phase appearing in the exponential in equation (15) can
be given a very simple form:

(kz2(k, p2)− kz3(p3))D ' −1
~

(ε0(k, p3)− ε(k, p2)) tint.

(18)

The Raman-Nath approximation consists in neglecting the
dynamics of the atom inside the region where the poten-
tial V (x, z) is nonvanishing. This is a good approxima-
tion when the interaction time is short enough. A classical
treatment of the dynamics should give a good estimate of
the validity regime. Developing V (x, z) up to second or-
der in x near one of its minima, the oscillation angular
frequency is given by:

ωosc = 4ωrec
√
q. (19)

When the oscillation phase given by ωosctint is close to
1 radian, we have reached the upper limit where the dy-
namics inside the potential V is expected to be negligible.
This condition writes:

τint <
1

4
√
q
· (20)

A similar condition appears in the paper by Keller et al.
(τint < 1/(2

√
2q)). In the Raman-Nath approximation,

for an incident beam at normal incidence, the diffraction

probability in the nth order is a very classical result [14,24]
given by:

Pn = |Jn(γ)|2 (21)

where γ = 2qτint is the amplitude of the phase modula-
tion. With the present formalism, the demonstration of
this analytic formula is not at all straightforward. This is
not surprising as the Raman-Nath formula is exact only
in the limit q → ∞ and τint → 0, while keeping a finite
value to the phase γ = 2qτint. The description of the Bloch
states in the q →∞ limit requires a nonperturbative ap-
proach. Moreover, the validity range of the Raman-Nath
formula is narrow as shown by Berry [24], who has calcu-
lated the next terms of the 1/q expansion. The compact
character of equation (21) makes it very attractive and
somewhat obscures its narrow validity range (see also the
discussion by Henkel [25]). Using our formalism, it is easy
to calculate numerically the diffraction intensity for the
first diffraction orders. We have sampled the range 1–1000
for the potential strength parameter q and the range 0–16
for the phase γ. The calculated intensities of the zeroth
and first order diffraction peaks are plotted in Figure 3.
For the limited interaction times considered in these cal-
culations, the basis set necessary to get converged results
remains rather small: for instance, when q = 1000, our
calculations are converged with a basis size equal to 41
(as verified by increasing the basis size to 61).

6 The Bragg regime

Diffraction in the Bragg regime can provide ideal tools
such as mirrors and beam splitters for atomic interfer-
ometers [7,8]: the exit beam is split in only two beams
and their relative intensities can be tuned by varying the
potential strength V0 or the interaction time tint. We con-
sider here only the case of first order diffraction i.e. when
kx1 ' kg/2 (higher order diffraction is very similar as
shown by Giltner et al. [7,8]). We note kx1 = (1− κ)kg/2
and we assume that κ is positive so that kx1 belongs to the
first Brillouin zone. Then, the exact calculation of Bloch
states reduces to a two level problem completely similar to
the Rabi oscillation. These two levels noted |0〉 and |−1〉
are the levels:

|0〉 = |kx1, p = 0〉 and |−1〉 = |kx1, p = −1〉 (22)

where we have used the notations introduced by equa-
tion (6). These two unperturbed levels represent the plane
waves with the x-component of the wavevector equal to
kx1 and kx1−kg, corresponding respectively to the diffrac-
tion orders 0 and −1. When V0 = 0, the energy of these
unperturbed levels are, after shifting the energy zero to
a convenient value, ε0 = −∆/2 and ε−1 = +∆/2, where
∆ = 4~ωrecκ. In the presence of a potential, the coupling
terms between these two levels are just equal to V0/4.
The Bloch eigenstates result from the diagonalization of
the 2× 2 Hamiltonian:

H =
[
−∆/2
V0/4

V0/4
∆/2

]
= ~ωrec

[
−2κ
q

q

2κ

]
(23)
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Fig. 3. Plot of the diffraction intensity in the zero order P0

(part a) and first order P1 (part b) for normal incidence and
for various q values as a function of the product γ = 2qτint:
solid line q = 1000, dot-dashed line q = 100, dashed line q =
10 and dotted line q = 1. The validity of the Raman-Nath
formula (Eq. (21)) for the two diffraction orders tested here is
excellent when q = 1000 up to our largest γ value. The validity
range shrinks rapidly when q decreases: the deviation from the
Raman-Nath formula (21) appears near γ = 5 with q = 100,
near γ = 1.5 when q = 10 and near γ = 0.5 for q = 1, in
excellent agreement with the validity range γ <

√
q/2 deduced

from condition (20). Finally, the behaviour for q = 1, which
reminds the Rabi oscillation observed in the Bragg regime, can
be explained: the problem involves almost only the three lowest
Bloch states describing the plane waves with kx = 0,±kg and
the symmetry associated to normal incidence makes that the
kx = 0 state is coupled only to the symmetric combination
of the other states. This symmetry reduces the problem to a
two-level problem.

with the following energies:

ε± = ±~Ω/2 with

~Ω/2 =

√(
∆

2

)2

+
(
V0

4

)2

= ~ωrec

√
q2 + 4κ2. (24)

These energies plotted as a function of kx1 exhibit a char-
acteristic avoided crossing, as illustrated by Figure 4. The
eigenstates are given by:

|+〉 = cos θ |−1〉+ sin θ |0〉
and |−〉 = − sin θ |−1〉+ cos θ |0〉 . (25)

The mixing angle θ such that 0 ≤ θ < π/2 is defined by

tan 2θ = V0/(2∆) = q/(2κ). (26)

Fig. 4. Detail of the energy diagram of Figure 2 near the
border of the first Brillouin zone around the energy ε = ~ωrec.
The three curves correspond to the case q = 0 (full line), q =
0.1 (dotted line), q = 0.2 (dashed line). The avoided crossing
which plays the central role in first order Bragg scattering is
clearly visible.

The initial state can be expressed as a function of the
Bloch states:

|kx1〉 = |0〉 = sin θ |+〉+ cos θ |−〉 . (27)

Taking into account the propagation through the grating,
we get the wavefunction in the exit plane z = D:

〈z = D|Ψ2〉 = sin θ exp(ik+
z D) |+〉+ cos θ exp(ik−z D) |−〉

(28)

where k±z are the z-component of the wavevector associ-
ated to these two internal states. Their values are deduced
from energy conservation (Eq. (16)) and their difference
is given by (see also Eq. (18)):

k+
z − k−z ≈ −

ε+ − ε−
~vz

· (29)

When expressed in the free basis set (|0〉 and |−1〉), this
wavefunction gives the amplitudes of diffraction in the
zero and first orders. The probability P1 of diffraction in
the first order is given by:

P1 =
V 2

0

V 2
0 + 4∆2

sin2

(
Ωtint

2

)
=

q2

q2 + 4κ2
sin2

(
τint

√
q2 + 4κ2

)
(30)

which is just the Rabi oscillation formula applied to Bragg
diffraction. This formula has been written before many
times [7,8,16]. When kx1 is just outside the first Brillouin
zone, κ is negative, but the calculation remains the same,
except that the initial state is now the state |−1〉. This
does not modify the diffraction probability still given by
equation (30).

This formula gives useful information on the selectiv-
ity with kx1 (or with κ) of the Bragg diffraction process.
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Fig. 5. Plot of the maximum intensity P1 max that can be
reached in first diffraction order as a function of the reduced
incident momentum kx1/kg. For kx1 = kg/2, the Bragg condi-
tion is fulfilled. Solid lines q = 1: the thin line represents the
result of the two-level calculation, while the full thicker line
represents the result of the complete calculation. For smaller
values of q, the difference between these two calculations is too
small to be visible at the scale of the figure. Long-dashed line:
q = 0.3, dotted line: q = 0.1, dashed line: q = 0.01.

Using the phase γ = 2qτint defined previously and a di-
mensionless parameter Y = 2∆/V0 = 2κ/q, we get:

P1 =
1

1 + Y 2
sin2

(
γ
√

1 + Y 2

2

)
. (31)

The diffraction efficiency reaches a maximum value equal
to 1/(1 + Y 2) for the optimum value of the phase γ (i.e.
of the interaction time tint). We plot in Figure 5 this max-
imum value of the probability P1 as a function of kx1 for
different values of the parameter q. We compare in this
figure the prediction of equation (31) with the results of
a numerical calculation, in which the two-level hypoth-
esis is relaxed (P1 is calculated as a function of tint by
the computer program which then extracts its maximum
value). As expected from the inspection of Figure 4, when
q is small, the avoided crossing in the Bloch state energy
diagram is very narrow, the two level hypothesis is an ex-
cellent approximation and the diffraction process is very
sensitive to the value of kx1 . On the contrary, when one
works with a substantial value of the potential strength
parameter q (q ≈ 1), the selectivity with the value of kx1

is rather poor and at the same time, the two level calcu-
lation deviates from the numerical result.

The parameter Y measures the distance to the Bragg
condition in a real experiment. For instance, if the beam
has a negligible angular dispersion and vBragg represents
the velocity corresponding to the Bragg condition for the
incidence angle, then Y is proportional to the velocity dif-
ference ∆v = (v − vBragg), (exactly, Y = 2∆v/(qvBragg)).
In the same way, if the velocity dispersion is negligible
and iBragg is the Bragg incidence angle for the mean veloc-
ity, Y is proportional to the difference in incidence angle
∆i = (i − iBragg), (exactly, Y = 2∆i/(qiBragg)). In both
cases, the diffraction probability P1 is a resonant function
whose width is proportional to q.

7 Discussion

An important question concerns the practical interest of
our calculation: we have introduced somewhat artificially
discontinuities in the plane z = 0 and z = D, which do
not exist in a real experiment. An adiabatic argument sug-
gests that in the absence of any discontinuity, the initial
free state transforms adiabatically in a single Bloch state
which transforms back to the same free state when the
atom emerges out of the laser standing wave. Neverthe-
less, non adiabatic transitions can occur even in a poten-
tial having a smooth and bell-shaped envelope V0(z). We
will assume that the potential V0(z) is fully negligible out-
side a region defined by zi < z < zf . We discuss here the
case of first order Bragg scattering with q � 1, so that
we can consider only two levels as in the previous section,
but we think that the argument is general. In the basis
set defined above (Eq. (22)), we have now to integrate the
Schrödinger equation as a function of z (see Appendix A):

i~vz
∂ψ(x, z)
∂z

= Hψ(x, z) (32)

where the Hamiltonian H is given by equation (23) in
which V0 is now a function of z. Let us first consider that
the incidence angle is such that the Bragg condition is
exactly fulfilled, kx1 = kg/2. Then, the two levels are ex-
actly degenerate (∆ = 0) when the potential vanishes.
In the presence of such a degeneracy, the adiabatic argu-
ment is obviously not valid. This case corresponds to the
resonance Rabi oscillation which is exactly solvable what-
ever the function V0(z). Assuming the same initial con-
ditions as above, we get the probability P1 of first order
diffraction:

P1 = sin2 (ϕ) with ϕ =
∫ zf

zi

V0(z)
4~vz

dz. (33)

If the incidence angle is not exactly equal to the Bragg
angle, ∆ is nonzero but small (∆� ~ωrec), the adiabatic
argument is valid in the far wings of V (z), where V (z)�
∆, but, in the region where V (z) ≈ ∆, the eigenstates
of the 2 × 2 Hamiltonian (Eq. (23)) rotate rapidly as a
function of z. The behaviour will be nonadiabatic in the
regions where the following condition holds:

dθ/dt & Ω/2 (34)

where θ and Ω are defined by equations (26, 24) respec-
tively. With the present notations, a nonadiabatic be-
haviour occurs when:

4~vz
∣∣∣∣∆dV0(z)

dz

∣∣∣∣ & (4∆2 + V 2
0 (z)

)3/2
. (35)

Then it is a good approximation to assume that the tran-
sitions from free states (V0(z) � ∆) to Bloch states
(V0(z) � ∆) and backwards are sudden. In this case, al-
though the potential envelope V0(z) is smooth, the atomic
dynamics can be described in a discontinuous manner.
This discontinuous dynamics is precisely what we have
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introduced in our model calculation in the plane z = 0
and z = D. With a smooth potential, the sudden changes
occur probably near the z values for which V0(z) = ∆, but
their exact location depends of the shape of V0(z) and of
the velocity vz . In the entrance pathway, the initial state
is projected on the Bloch states which are projected back-
wards on the free states in the exit pathway. These two
non adiabatic events occur in the region defined by equa-
tion (35). The propagation of the two Bloch states involves
a phase difference which plays the role of the phase of the
sine in equation (30). This behaviour can be illustrated
in an exactly solvable case. Because laser beams are often
well described by Gaussian functions, it would be interest-
ing to consider a potential V0(z) = VG exp(−2z2/w2

G) pro-
portional to light intensity (where wG is the beam waist
radius). Unfortunately, in this case, we do not know any
analytic solution. We will therefore consider a hyperbolic
secant case for which an analytic solution exists [27,28]:

V0(z) = VSH/ cosh(z/wSH). (36)

One should keep in mind that the hyperbolic secant pulse
has longer wings than the Gaussian pulse. The transition
probability in this case is given by:

P1 =
sin2 (πVSHwSH/4~vz)
cosh2 (π∆wSH/2~vz)

· (37)

In the case ∆ = 0, as expected, this is just the general
result given by equation (33). When ∆wSH/~vz becomes
larger than 1, the transition probability decreases rapidly
as expected from the adiabaticity argument. Except when
|z| is small, |z| . wSH, the derivative of V0(z) is closely
approximated by ±V0(z)/wSH. Then with this approxi-
mation, the condition (35) is most easily fulfilled near the
point where V0(z) = ∆/

√
2 and at this point, the nonadi-

abaticity condition is given by:

|∆| ≤ 2~vz/(3
√

3wSH). (38)

When ∆ reaches this limit, the diffraction efficiency is still
as large as 0.71. For larger ∆ values, the diffraction effi-
ciency becomes rapidly very small because the behaviour
is adiabatic everywhere. Equation (37) can be used to
study the selectivity of Bragg scattering in a more re-
alistic case than previously. Assuming that the phase of
the sine is optimized (this phase must be equal to π/4
for a beam-splitter and to π/2 for a mirror), the angular
or velocity selectivity comes only from the denominator.
This result is somewhat peculiar to the hyperbolic secant
pulse for which the power broadening appearing in the
Rabi formula has no equivalent.

8 Conclusion

The Bloch state description appears to be a very good tool
to understand atomic diffraction in a unified manner. The
Bloch states can be viewed as an extension of the dressed
atom picture [22] from the energy spectrum to the mo-
mentum domain. In the dressed atom picture, the spon-
taneous emission process plays an important dynamical

role: the atom can jump from one multiplicity to the next
one through spontaneous emission. If the atomic dressing
involves momentum, the problem becomes rapidly very
complex as the momentum is a vector in 3D. Because the
momentum transfer due to spontaneous emission can take
any direction, the evolution in the momentum space is not
easily visualized. The large simplification here comes from
the 1D character of the laser waves and from the absence
of spontaneous emission, both being necessary to keep an
effective 1D character to the momentum problem.

We have shown that simple numerical calculations can
be used to calculate atomic diffraction for almost any case
as long as the parameter q measuring the strength of the
potential is not very large compared to 1. We can thus de-
scribe all the different regimes studied up to now: Raman-
Nath, Bragg and channeling (this last case has not been
studied here in order to focus on the simplest ones). How-
ever, the calculation is very simple only if we assume a
rectangular intensity profile for the laser standing wave.
This simple calculation provides physical insight, but, ob-
viously, this is not always a good approximation. Finally,
we have discussed the validity of this approximation in the
case of Bragg diffraction, as this regime appears to be of
greatest practical interest.

This work can be extended to study several other cases:

– the Bragg diffraction regime has been studied as in-
volving only two Bloch states and this is just a reword-
ing of previous works (see the review by Bordé [16]
and references therein). The real problem involves an
infinity of states, among which one other state is also
strongly coupled and is not very far away. This non-
resonant coupling should play a role comparable to
the one of the counter rotating wave in magnetic reso-
nance, creating the Bloch-Siegert shift. We think that
this is an important question as some phaseshifts could
be due to this effect;

– the present treatment can be generalized to other
diffraction processes, for instance involving Raman
transfer among hyperfine levels [29–32];

– the present formalism can probably be extended to
represent atomic diffraction by material gratings, in-
cluding the effects of the atom-grating van der Waals
interaction [26].

We are very much indebted to G. Bastard, J. Dalibard,
A. Aspect for very helpful discussions, to C. Keller for pro-
viding us a preprint of reference [21], to N. Vitanov for an illu-
minating course on coherent atomic excitation by laser pulses
and to one of our referees for pointing out to us the work of
Wagner [23]. Région Midi-Pyrénées is gratefully acknowledged
for financial support given to our laboratory.

Appendix A

Starting from the Schrödinger equation (2):

− ~
2

2m

(
∂2Ψ

∂x2
+
∂2Ψ

∂z2

)
+ V (x, z)Ψ =

~2k2
1

2m
Ψ (39)
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this equation can be simplified if one assumes that the
total energy E = ~2k2

1/2m is large (E � V (x, z)) and
that the wavevector is almost parallel to the z-axis. One
then searches an approximate solution Ψ of the form:

Ψ = exp(ik1z)ψ(x, z) (40)

where the z-dependence of ψ(x, z) is assumed to be small
so that one can neglect the second derivative with respect
to z. This gives:

i~2k1

m

∂ψ

∂z
= − ~

2

2m
∂2ψ

∂x2
+ V (x, z)ψ. (41)

One recognizes the velocity vz = ~k1/m and this equation
takes the final form:

i~vz
∂ψ

∂z
= Hxψ. (42)

Here Hx = − ~2

2m
∂2

∂x2 +V (x, z) is the Hamiltonian describ-
ing the dynamics in the x-direction. If one puts t = z/vz,
one gets the usual time-dependent Schrödinger equation
in the quasi-classical limit, where velocity vz is assumed
to be constant.

Appendix B

In his book [24], Berry has studied diffraction of light by
acoustic waves: the medium of thickness D is described by
its refraction index µ0 +µ1 cos(bη) where the second term
is the small modulation due to the acoustic wave (the slow
time dependence being neglected). The wave equation for
light (Eq. (4.1.1) of [24]) is:

∂2φ

∂η2
+
∂2φ

∂ξ2
+ k2µ2

0

(
1 +

2µ1 cos(bη)
µ0

)
φ = 0. (43)

This equation is strictly equivalent to our equation (3) if
one uses the following correspondence: η → x, ξ → z,
φ → Ψ , kµ0 → k1, (2µ1/µ0) → (−V0/2E), b → kg.
Berry introduces two dimensionless parameters defined by
ρ = b2/(µ0µ1k

2) and x = kµ1D (not to be taken for our x
coordinate). The translation in our notations is straight-
forward: ρ becomes −1/q and x becomes −γ = −2qτint.

The intensities of the first diffraction orders as a func-
tion of x = −γ obtained by numerical calculations with an
analogue computer are plotted by Berry [24] (Figs. 11–13,
pp. 110–112) for various values of the parameter ρ. We
have recalculated these curves with our technique and the
curves we obtain are extremely similar (as illustrated by
Fig. 3), if we accept to consider that the ρ values given by
Berry are too large by a factor 4. We have no explanation
for this discrepancy.
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